Gujarat Board Textbook Solutions Class 9 Maths Chapter 2 Polynomials Ex 2.2
Gujarat Board Textbook Solutions Class 9 Maths Chapter 2 Polynomials Ex 2.2
GSEB Solutions Class 9 Maths Chapter 2 Polynomials Ex 2.2
Question 1.
Find the value of the polynomial 5x – 4x2 + 3 at
(i) x = 0
(ii) x = – 1
(iii) x = 2
Solution:
Let p(x) = 5x – 4x2 + 3
(i) Substituting x = 0 in p(x)
p(0) = 5 x (0) – 4 x (0)2 + 3
p(0) = 3
(ii) Substituting x = – 1 in p(x)
p(- 1) = 5 x (- 1) – 4(- 1)2 + 3
= – 5 – 4 + 3 = – 9 + 3 = – 6
(iii) Substituting x = 2 in p(x)
p(2) = 5 x 2 – 4(2)2 + 3
= 10 – 4 x 4 + 3 = 13 – 16 = – 3
Question 2.
Find p(0), p(1) and p( 2) for each of the following polynomials:
(i) p(y) = y2 – y + 1
(ii) p(t) = 2 + t + 2t2 – t3
(iii) p(x) = x3
(iv) p(x) = (x – 1) (x + 1)
Solution:
(i) p(y) = y2 – y + 1
∴ p(0) = (0)2 – (0) + 1 = 1
p(y) = y2 – y + 1
p(1) = (1)2 – (1) + 1 = 1 – 1 = 1
p(2) = (2)2 – 2 + 1 = 4 – 2 + 1 = 2 + 1 = 3
(ii) p(t) = 2 + t + 2t2 – t3
∴ p(0) = 2 + (0) + 2(0)2 – (0)3 = 2
p(1) = 2 + (1) + 2(1)2 – (1)3
= 2 + 1 + 2 – 1 = 4
p(2) = 2 + 2 + 2(2)2 – 23
= 4 + 2 x 4 – 8
= 4 + 8 – 8 = 4
(iii) p(x) = x3
∴ p(0) = (0)3 = 0
p(1) = (1)3 = 1
p(2) = (2)3 = 8
(iv) p(x) = (x – 1) (x + 1)
∴ p(0) = (0 – 1) (0 + 1) = (- 1) x (1) = – 1
p(1) = (1 – 1) (1 + 1) = 0 x 2 = 0
p(2) = (2 – 1) (2 + 1) = 1 x 3 = 3
Question 3.
Verify whether the following are zeroes of the polynomial, indicated against them.
(iii) p(x) = x2 – 1, x = 1, – 1
p(1) = (1)2 – 1, 1 = 1 – 1 = 0
p(- 1) = (- 1)2 – 1 = 1 – 1 = 0
∴ x = 1, and x = – 1 are zeroes
(iv) p(x) = (x + 1) (x – 2), x = – 1, 2
p(- 1) = (- 1 + 1) (- 1 – 2) .
= 0 x (- 3) = 0
p(2) = (2 + 1) (2 – 2) = 3 x (0)
∴ p(2) = 0
Hence x = – 1, and x = 2 are zeroes of p(x).
(v) p(x) = x2, x = 0
p(0) = (0)2 = 0
∴ x = 0 is a zero of p(x)
Question 4.
Find the zero of the polynomial in each of the following cases:
(i) p(x) = x + 5
(ii) p(x) = x – 5
(iii) p(x) = 2x + 5
(iv) p(x) = 3x – 2
(v) p(x) = 3x
(vi) p(x) = ax, a ≠ 0
(vii) p(x) = cx + d, c ≠ 0, c, d are real numbers.
Solution:
(i) p(x) = x + 5
Let p(x) = 0
⇒ x + 5 = 0
⇒ x = – 5
∴ x = – 5 is zero of polynomial p(x)
(ii) p(x) = x – 5
Let p(x) = 0
⇒ x – 5 = 0
⇒ x = 5
∴ x = 5 is zero of polynomial p(x)
(iii) p(x) = 2x + 5
Let p(x) = 0
⇒ 2x + 5 = 0
⇒ 2x = 5
∴ x = −5/2 is zero of polynomial p(x)
(iv) p(x) = 3x – 2
Let p(x) = 0
⇒ 3x – 2 = 0
⇒ 3x = 2
∴ x = 2/3 is zero of polynomial p(x)
(v) p(x) = 3x
Let p(x) = 0
⇒ 3x = 0
⇒ x = 0
∴ x = 0 is zero of polynomial p(x)
(vi) p(x) = ax, a ≠ 0
Let p(x) = 0
⇒ ax = 0
⇒ x = 0/a
⇒ x = 0
∴ x = 0 is zero of polynomial p(x)
(vii) p(x) = cx + d, c ≠ 0, c, d are real numbers.
Let p(x) = 0
⇒ cx + d = 0
⇒ cx = – d
⇒ x = −d/c
∴ x = −d/c is zero of polynomial p(x)
Follow on Facebook page – Click Here
Google News join in – Click Here
Read More Asia News – Click Here
Read More Sports News – Click Here
Read More Crypto News – Click Here